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Solution Set 1

1. (a) Since (AB)ij = AikBkj and (At)ij = Aji, we have that

((AB)t)ij = AjkBki = BkiAjk = (Bt)ik(At)kj = (BtAt)ij , (1)

which is the identity we wished to prove.

(b) Dropping the summation signs as using the fact that (Rt)ij = Rji, Griffiths 1.32 can be written as

T ij = RikRjlTkl = RikTklRjl = RikTkl(Rt)lj = (RTRt)ij . (2)

2. We wish to prove that

εijkεklm = δilδjm − δimδjl. (3)

To do this directly would entail checking all 3 × 3 × 3 × 3 = 81 cases, but we can use symmetry and the
properties of εijk to reduce this substantially. First, by rotational symmetry, we can always assume that i = 1,
which reduces the problem to just checking the remaining 27 possibilities for j, k, and l. Next, note that both
sides of the equation are antisymmetric under the interchange of i and j. This means that if i = j = 1, both
sides are zero, leaving us only to check the 2× 3× 3 = 18 cases with i = 1 and j = 2, 3,

ε1jkεklm = δ1lδjm − δ1mδjl. (4)

Similarly, both sides are antisymmetric under the interchange of l and m, and so we only need to check the
2× 3× 3− 2× 6 = 6 cases where m > l (so in particular, m = 2, 3). In these cases, the right hand side of Eqn.
4 is only non-zero if l = i = 1 and also j = m = 2, 3. This is also true of the left hand side. To see this, first
note that ε1jk �= 0 only if either j = 2, k = 3 or j = 3, k = 2. In these two cases, εklm �= 0 as well only if m = j.
Thus, we are left to checking the two remaining non-zero possibilities, j = m = 2 and j = m = 3,

ε12kεk12 = δ11δ22 − δ12δ21 = 1, (5)

ε13kεk13 = δ11δ33 − δ13δ31 = 1, (6)

which finishes the proof.

3. Using the above identity (3), we see that
[
�A× ( �B × �C)

]
i
= εijkεklmAjBlCm = (δilδjm − δimδjl)AjBlCm = AjBiCj −AjBjCi

= Bi( �A · �C)− Ci( �A · �B) =
[
�B( �A · �C)− �C( �A · �B)

]
i
.

(7)

4. We use equation (7) with �A = �C = n̂ and �B = F ,

n̂ × (�F × n̂) = �F (n̂ · n̂)− n̂(n̂ · �F ) = �F − n̂(�F · n̂). (8)

This implies that,

�F = n̂(�F · n̂) + n̂ × (�F × n̂). (9)

Now, the first term on the RHS of this equation is just the component of �F parallel to n̂, while the second
term (which is orthogonal to the first as it n̂ times another vector) is just the component perpendicular to it.
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5. (a) If Sij = Sji and Aij = −Aji, then,

SijAij = Sji(−Aji). (10)

Now, as we sum over the indices i and j (these are referred to as dummy indices), what we choose
to call them doesn’t really matter. For instance, I could replace j with k and i with l, and clearly,
Sji(−Aji) = Skl(−Akl). So now, nothing stops me from further replacing k with i and l with j, to get
Skl(−Akl) = Sij(−Aij) = −SijAij . But now, tracing back to the first equation, we get

SijAij = −SijAij = 0. (11)

(b) Since εijk is antisymmetric in j and k while ∂j∂kf is symmetric in j and k, the result of part (a) immediately
gives us,

[(∇× (∇f))]i = εijk∂j∂kf = 0. (12)

(c) Since εijk is antisymmetric in i and j while ∂i∂jFk is symmetric in i and j, again, from part (a) we have,

∇ · (∇× �F ) = εijk∂i∂jFk = 0. (13)

6. We consider the vector field �F (�r) = φ̂.

(a) Since C is a circle of radius r in the xy plane, the line element along C is a vector tangent to the circle (so
along φ̂) with magnitude given by an infinitessimal element of circumference. In particular, using Griffiths
1.68 with θ = π/2, we see that d�l = (rdφ)φ̂. Thus, we have that

∮
C

�F · d�l =
∫ 2π

0

φ̂· (rdφ)φ̂=
∫ 2π

0

rdφ = 2πr. (14)

(b) First, we calculate the curl of �F in spherical coordinates using Griffiths 1.72 with Fφ = 1 and Fθ = Fr = 0,

∇× �F = cos θ
r sin θ

r̂ − 1
r
θ̂. (15)

Next, we need the area element for integrating over the surface of a (hemi-)sphere. Since r is constant
while θ and φ vary, we see that (from Griffiths page 40),

d�a = dlθdlφr̂ = r2 sin θdθdφr̂. (16)

Integrating over the hemisphere means that we restrict the integral over θ to (0, π/2) rather than (0, π),
so we find that

∫
H

(∇× �F ) · d�a =
∫ π/2

0

cos θ
r sin θ

r2 sin θdθ
∫ 2π

0

dφ = 2πr
∫ π/2

0

cos θ = 2πr. (17)

(c) Now, instead of integrating over the hemisphere, we need to integrate over a disk in the xy plane. Here
θ = π/2 is constant, while we vary φ and r, and we expect that the area element should be directed along
θ̂. However, θ̂ increases as we got to negative z, so it points downward on the xy-plane while we want an
upward pointing area element. Thus, we are lead to the area element (- the result from Griffiths page 40),

d�a = −dlrdlφθ̂= −rdrdφθ̂. (18)

Thus, we find that
∫

D

(∇× �F ) · d�a =
∫ r

0

−1
r
(−r)dr

∫ 2π

0

dφ = 2πr. (19)
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(d) Clearly, as the answer from part (a), (b), and (c) all agree, and as C is the boundary for both the
Hemisphere and Disk (H and D), we see that Stoke’s theorem indeed holds.

7. We use Dirac delta functions to express various charge distributions as three dimensional charge densities.

(a) A charge Q distributed over a disk of radius b in the surface x = y = 0 should have a charge density
proportional to Q/(πb2) and be non-zero only if z = 0 and r < b in cylindrical coordinates. Thus, its
charge density should be,

ρ(�r) =
Q

πb2
θ(b− r)δ(z), (20)

where θ(x) is a step function (defined in Griffiths 1.95) which is zero if x ≤ 0 and 1 if x > 0. We can
check this by integrating this density over all space to make sure that the total charge is actually just Q,

∫
ρ(�r)d3�r =

∫ ∞

0

Q

πb2
θ(b− r)rdr

∫
δ(z)dz

∫ 2π

0

dφ =
2Q
b2

∫ b

0

rdr = Q. (21)

(b) An infinitely long wire along the z-axis with charge per unit length λ should correspond to a three
dimensional charge density which is non-zero only when x = y = 0 and is proportional to λ,

ρ(�r) = λδ(x)δ(y). (22)

To see that this is the correct expression, we integrate the charge density over a surface z = a for some
constant a to get the charge per unit length,∫

z=a

ρ(�r)dxdy =
∫
λδ(x)δ(y)dxdy = λ. (23)

(c) A charge per unit length λ distributed over an infinitely long cylinder with radius b along the z-axis should
be non-zero only when r = b and all values of φ and z in cylindrical coordinates,

ρ(�r) =
λ

2πb
δ(r − b). (24)

Just as in part (b), we can integrate this charge density over a surface z = a to get the charge per unit
length,

∫
z=a

ρ(�r)rdrdφ =
∫ ∞

0

λ

2πb
δ(r − b)rdr

∫ 2π

0

dφ = λ. (25)

8. We consider the vector field �H(x, y, z) = x2yx̂+y2zŷ+z2xẑ. Since we know that the irrotational part �F obeys
∇ · �H = ∇ · �F , and that �F = −∇V for some potential V , we must have

∇ · ∇V = ∇2V = −∇ · �H = −2(xy + yz + zx). (26)

So, we need to find some V (x, y, z) which satisfies

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= −2(xy + yz + zx) (27)

Clearly, the following guess does the job,

V (x, y, z) = − [
x2(yz) + y2(xz) + z2(xy)

]
. (28)

Thus, we find that

�F = −∇V = yz(2x+ y + z)x̂+ xz(2y + x+ z)ŷ + xy(2z + x+ y)ẑ, (29)

and so we must have

�G = �H − �F = y(x2 − z(2x+ y + z))x̂+ z(y2 − x(2y + x+ z))ŷ + x(z2 − (2z + x+ y))ẑ, (30)

where by construction, ∇ · �G = 0 and so �G is solenoidal.
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